High Molecular Weight Hyaluronic Acid Inhibits Fibrosis of Endometrium
نویسندگان
چکیده
BACKGROUND Elevated fibrosis has been found in patients with intrauterine adhesion, which indicates that fibrotic factors may play a critical role in formation of intrauterine adhesion. The aim of this study was to identify the effect of hyaluronic acid (HA) at high and low molecular weight on fibrosis of the endometrium in a mouse model of Asherman's syndrome. MATERIAL AND METHODS Endometrial fibrosis in a mouse model of Asherman's syndrome was confirmed. Then HA at high and low molecular weight was injected into the uterine cavity. Endometrial fibrosis was compared among the control group, LMW-HA, and HMW-HA group. The extent of endometrial fibrosis was calculated using Masson stain. The fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in endometrial tissue were detected using immunohistochemistry and Western blotting. RESULTS The ratio of the area with endometrial fibrosis to total endometrial area in the HMW-HA group was significantly decreased compared to the control group (P<0.05). The expression of fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in the endometrium was attenuated in the HMW-HA group compared to the control group, but the LMW-HA group had no similar effect. CONCLUSIONS Hyaluronic acid at high molecular weight may attenuate the degree of endometrial fibrosis after endometrial damage, which may contribute to preventing formation of intrauterine adhesions.
منابع مشابه
High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation
BACKGROUND Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6) Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5) Da). METHODS AND ...
متن کاملHigh and low molecular weight hyaluronic acid differentially influence macrophage activation.
Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activatio...
متن کاملHyaluronic Acid: From Biochemical Characteristics to its Clinical Translation in Assessment of Liver Fibrosis
CONTEXT Hyaluronic acid (HA) is a high molecular weight polysaccharide that is distributed in all bodily tissues and fluids. The liver is the most important organ involved in the synthesis and degradation of HA. Research has shown that liver cell injury can affect serum HA levels. In this review, authors aimed to describe the biochemical and physiological roles of this glycosaminoglycan and its...
متن کاملPKCa Agonists Enhance the Protective Effect of Hyaluronic Acid on Nitric Oxide-Induced Apoptosis of Articular Chondrocytes in Vitro
Objective(s): Protein kinase C (PKCα) is involved in modulating articular chondrocytes apoptosis induced by nitric oxide (NO). Hyaluronic acid (HA) inhibits nitric oxide-induced apoptosis of articular chondrocytes by protecting PKCα, but the mechanism remains unclear. The present study was performed to investigate the effects and mechanisms of PKCα regulate protective effect of hya...
متن کاملEffects of Low and High Molecular Weight Hyaluronic Acids on Peridural Fibrosis and Inflammation in Lumbar Laminectomized Rats
BACKGROUND Postlaminectomy peridural fibrosis is inevitable. Some studies have compared and identified the effects of high molecular weight hyaluronic acids (HMWHA) and low molecular weight hyaluronic acids (LMWHA) on peridural fibrosis in postlaminectomy animal models. However, no studies have been found that compare pain behaviors between hyaluronic acids or among hyaluronic acids and other s...
متن کامل